A Graph-based Approach for Contextual Text Normalization
نویسندگان
چکیده
The informal nature of social media text renders it very difficult to be automatically processed by natural language processing tools. Text normalization, which corresponds to restoring the non-standard words to their canonical forms, provides a solution to this challenge. We introduce an unsupervised text normalization approach that utilizes not only lexical, but also contextual and grammatical features of social text. The contextual and grammatical features are extracted from a word association graph built by using a large unlabeled social media text corpus. The graph encodes the relative positions of the words with respect to each other, as well as their part-ofspeech tags. The lexical features are obtained by using the longest common subsequence ratio and edit distance measures to encode the surface similarity among words, and the double metaphone algorithm to represent the phonetic similarity. Unlike most of the recent approaches that are based on generating normalization dictionaries, the proposed approach performs normalization by considering the context of the non-standard words in the input text. Our results show that it achieves state-ofthe-art F-score performance on standard datasets. In addition, the system can be tuned to achieve very high precision without sacrificing much from recall.
منابع مشابه
Social Text Normalization using Contextual Graph Random Walks
We introduce a social media text normalization system that can be deployed as a preprocessing step for Machine Translation and various NLP applications to handle social media text. The proposed system is based on unsupervised learning of the normalization equivalences from unlabeled text. The proposed approach uses Random Walks on a contextual similarity bipartite graph constructed from n-gram ...
متن کاملAn Optimal Approach to Local and Global Text Coherence Evaluation Combining Entity-based, Graph-based and Entropy-based Approaches
Text coherence evaluation becomes a vital and lovely task in Natural Language Processing subfields, such as text summarization, question answering, text generation and machine translation. Existing methods like entity-based and graph-based models are engaging with nouns and noun phrases change role in sequential sentences within short part of a text. They even have limitations in global coheren...
متن کاملNCSU_SAS_WOOKHEE: A Deep Contextual Long-Short Term Memory Model for Text Normalization
To address the challenges of normalizing online conversational texts prevalent in social media, we propose a contextual long-short term memory (LSTM) recurrent neural network based approach, augmented with a self-generated dictionary normalization technique. Our approach utilizes a sequence of characters as well as the part-of-speech associated with words without harnessing any external lexical...
متن کاملThe Impact of Contextual Clue Selection on Inference
Linguistic information can be conveyed in the form of speech and written text, but it is the content of the message that is ultimately essential for higher-level processes in language comprehension, such as making inferences and associations between text information and knowledge about the world. Linguistically, inference is the shovel that allows receivers to dig meaning out from the text with...
متن کاملImproving Text Normalization by Optimizing Nearest Neighbor Matching
Text normalization is an essential task in the processing and analysis of social media that is dominated with informal writing. It aims to map informal words to their intended standard forms. In this paper, we present an automatic optimization-based nearest neighbor matching approach for text normalization. This approach is motivated by the observation that text normalization is essentially a m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014